Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585946

RESUMEN

Gene expression is a multi-step transformation of biological information from its storage form (DNA) into functional forms (protein and some RNAs). Regulatory activities at each step of this transformation multiply a single gene into a myriad of proteoforms. Proteogenomics is the study of how genomic and transcriptomic variation creates this proteoform diversity, and is limited by the challenges of modeling the complexities of gene-expression. We therefore created moPepGen, a graph-based algorithm that comprehensively enumerates proteoforms in linear time. moPepGen works with multiple technologies, in multiple species and on all types of genetic and transcriptomic data. In human cancer proteomes, it detects and quantifies previously unobserved noncanonical peptides arising from germline and somatic genomic variants, noncoding open reading frames, RNA fusions and RNA circularization. By enabling efficient identification and quantitation of previously hidden proteins in both existing and new proteomic data, moPepGen facilitates all proteogenomics applications. It is available at: https://github.com/uclahs-cds/package-moPepGen.

2.
Heliyon ; 10(7): e28636, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576577

RESUMEN

The root of Angelica sinensis is utilized in Traditional Chinese medicine to enhance blood replenishment and facilitate blood circulation. The early bolting and flowering (EBF) of A. sinensis, however, compromises the quality of the roots and restricts the yield of medicinal substances. The study was conducted to compare the transcriptomic and metabolomic profiles between EBF plants and normal plants of two cultivars of A. sinensis, followed by validation of the transcriptome results using qRT-PCR. There were 3677 DEGs in EBF plants compared to normal plants of cultivar 2 (Mingui No.2), and cultivar 4 (Mingui No.4) was 3354. The main differential metabolites in the EBF and normal plants were phenolic acids, flavonoids, lignans, and coumarins. The analysis of 5 EBF-related pathways revealed 28 genes exhibiting differential expression and 5 metabolites showing differential accumulation. The expression of the Lhcb5, Lhcb2, Lhcb6, Lhcb1, Lhca4, ATPG1, EGLC, CELB, AMY, glgA, CYCD3, SnRK2, PYL, AHK2, AUX1, BSK, FabI/K, ACACA and FabV decreased and the expression of the PsbR, PsbA, LHY, FT, CO, malQ, HK, GPI and DELLA increased in EBF plants. In addition, the Abscisic acid, d-Glucose-6P, α-d-Glucose-1P, NADP+, and ADP were more significantly enriched in EBF plants. The findings offer novel perspectives on the EBF mechanisms in A. sinensis and other medicinal plants of the Apiaceae family.

3.
Plants (Basel) ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475573

RESUMEN

Biomass is a direct reflection of community productivity, and the allocation of aboveground and belowground biomass is a survival strategy formed by the long-term adaptation of plants to environmental changes. However, under global changes, the patterns of aboveground-belowground biomass allocations and their controlling factors in different types of grasslands are still unclear. Based on the biomass data of 182 grasslands, including 17 alpine meadows (AMs) and 21 desert steppes (DSs), this study investigates the spatial distribution of the belowground biomass allocation proportion (BGBP) in different types of grasslands and their main controlling factors. The research results show that the BGBP of AMs is significantly higher than that of DSs (p < 0.05). The BGBP of AMs significantly decreases with increasing mean annual temperature (MAT) and mean annual precipitation (MAP) (p < 0.05), while it significantly increases with increasing soil nitrogen content (N), soil phosphorus content (P), and soil pH (p < 0.05). The BGBP of DSs significantly decreases with increasing MAP (p < 0.05), while it significantly increases with increasing soil phosphorus content (P) and soil pH (p < 0.05). The random forest model indicates that soil pH is the most important factor affecting the BGBP of both AMs and DSs. Climate-related factors were identified as key drivers shaping the spatial distribution patterns of BGBP by exerting an influence on soil nutrient availability. Climate and soil factors exert influences not only on grassland biomass allocation directly, but also indirectly by impacting the availability of soil nutrients.

4.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341660

RESUMEN

MOTIVATION: The ongoing expansion in the volume of biomedical data has contributed to a growing complexity in the tools and technologies used in research with an increased reliance on complex workflows written in orchestration languages such as Nextflow to integrate algorithms into processing pipelines. The growing use of workflows involving various tools and algorithms has led to increased scrutiny of software development practices to avoid errors in individual tools and in the connections between them. RESULTS: To facilitate test-driven development of Nextflow pipelines, we created NFTest, a framework for automated pipeline testing and validation with customizability options for Nextflow features. It is open-source, easy to initialize and use, and customizable to allow for testing of complex workflows with test success configurable through a broad range of assertions. NFTest simplifies the testing burden on developers by automating tests once defined and providing a flexible interface for running tests to validate workflows. This reduces the barrier to rigorous biomedical workflow testing and paves the way toward reducing computational errors in biomedicine. AVAILABILITY AND IMPLEMENTATION: NFTest is an open-source Python framework under the GPLv2 license and is freely available at https://github.com/uclahs-cds/tool-NFTest. The call-sSNV Nextflow pipeline is available at: https://github.com/uclahs-cds/pipeline-call-sSNV.


Asunto(s)
Biología Computacional , Programas Informáticos , Algoritmos , Lenguaje , Flujo de Trabajo
5.
Cell Death Dis ; 15(2): 135, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346961

RESUMEN

Impaired fatty acid oxidation (FAO) is a prominent feature of metabolic remodeling observed in pathological myocardial hypertrophy. Hepatocyte nuclear factor 4alpha (HNF4α) is closely associated with FAO in both cellular processes and disease conditions. Pellino 1 (Peli1), an E3 ligase containing a RING-like domain, plays a crucial role in catalyzing polyubiquitination of various substrates. In this study, we aimed to investigate the involvement of HNF4α and its ubiquitination, facilitated by Peli1, in FAO during pressure overload-induced cardiac hypertrophy. Peli1 systemic knockout mice (Peli1KO) display improved myocardial hypertrophy and cardiac function following transverse aortic constriction (TAC). RNA-seq analysis revealed that changes in gene expression related to lipid metabolism caused by TAC were reversed in Peli1KO mice. Importantly, both HNF4α and its downstream genes involved in FAO showed a significant increase in Peli1KO mice. We further used the antagonist BI6015 to inhibit HNF4α and delivered rAAV9-HNF4α to elevate myocardial HNF4α level, and confirmed that HNF4α inhibits the development of cardiac hypertrophy after TAC and is essential for the enhancement of FAO mediated by Peli1 knockout. In vitro experiments using BODIPY incorporation and FAO stress assay demonstrated that HNF4α enhances FAO in cardiomyocytes stimulated with angiotension II (Ang II), while Peli1 suppresses the effect of HNF4α. Mechanistically, immunoprecipitation and mass spectrometry analyses confirmed that Peli1 binds to HNF4α via its RING-like domain and promotes HNF4α ubiquitination at residues K307 and K309. These findings shed light on the underlying mechanisms contributing to impaired FAO and offer valuable insights into a promising therapeutic strategy for addressing pathological cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Miocardio , Animales , Ratones , Cardiomegalia/genética , Cardiomegalia/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
Chem Commun (Camb) ; 60(9): 1180-1183, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38193867

RESUMEN

Artificial dissipative molecular switches based on anion recognition are of great importance to simulate biological functions and construct smart materials. Five activated carboxylic acids are used as chemical fuels for dissipative molecular switches, which consist of an imidazolium macrocyclic host and a carboxylate anionic guest. By choosing different types of chemical fuels and using varied fuel concentrations, the rates of cyclic operations are tunable. The operation is capable of undergoing at least three cycles.

7.
J Org Chem ; 89(2): 1220-1227, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38152030

RESUMEN

The synthesis of chroman-3-ol derivatives via intramolecular nucleophilic additions has been established. Aldehydes can be used as alkyl carbanion equivalents via reductive polarity reversal which is facilitated by a copper catalyst and N-heterocyclic carbene ligand under mild conditions. The key to success is the difference in reaction activity between aldehydes and ketones. Finally, this methodology also can be used to construct other cyclic structures containing tertiary alcohols including tetraline, cyclohexane, indan, and 9,10-dihydrophenanthrene.

8.
Nat Commun ; 14(1): 7574, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990007

RESUMEN

Since 2019, SARS-CoV-2 has evolved rapidly and gained resistance to multiple therapeutics targeting the virus. Development of host-directed antivirals offers broad-spectrum intervention against different variants of concern. Host proteases, TMPRSS2 and CTSL/CTSB cleave the SARS-CoV-2 spike to play a crucial role in the two alternative pathways of viral entry and are characterized as promising pharmacological targets. Here, we identify compounds that show potent inhibition of these proteases and determine their complex structures with their respective targets. Furthermore, we show that applying inhibitors simultaneously that block both entry pathways has a synergistic antiviral effect. Notably, we devise a bispecific compound, 212-148, exhibiting the dual-inhibition ability of both TMPRSS2 and CTSL/CTSB, and demonstrate antiviral activity against various SARS-CoV-2 variants with different viral entry profiles. Our findings offer an alternative approach for the discovery of SARS-CoV-2 antivirals, as well as application for broad-spectrum treatment of viral pathogenic infections with similar entry pathways.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirales/uso terapéutico , Internalización del Virus , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
Mol Divers ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917323

RESUMEN

This study analysed the pharmacological mechanism of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen in sedation and tranquillising mind using network pharmacology methods. The findings of this study aimed to serve as a reference for the development of novel drugs and the clinical expansion and application of traditional Chinese medicine formulas. The chemical constituents and therapeutic targets of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen were acquired from TCMSP, HERB, and ETCM databases. Active components were identified using ADME criteria, while the primary targets associated with sedation and mental tranquillity were obtained from GENECARDS, OMIM, and DRUGBANK databases. A protein-protein interaction (PPI) network analysis was conducted using the STRING platform to investigate potential functional protein modules by the network. The METASCAPE platform was employed for the study of the "component-target" and its associated biological processes and pathways. Subsequently, the "component-target" network was constructed using Cytoscape 3.9.1 software. Finally, the validation of molecular docking was conducted through AUTODOCK. The findings revealed that Quercetin, Atropine, Dauricine, (S)-Coclaurine, and other active ingredients were identified as the core constituents of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen. Additionally, PTGS2, PTGS1, MAOB, GABRA1, SLC6A2, ADRB2, CHRM1, HTR2A, and other targets were identified as the core targets. The results of the molecular docking analysis demonstrated that Quercetin, Atropine, Dauricine, and (S)-Coclaurine exhibited binding solid affinity towards PTGS2 and PTGS1. The predominant biological pathways associated with sedation and tranquilisation primarily involved Neuroactive ligand-receptor interaction and activation of receptors involved in chemical carcinogenesis. This study provided initial findings on the multi-component, multi-target, and multi-pathway mechanism underlying the sedative and tranquillising effects of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen. These findings had the potential to serve as a foundation for the future development and utilisation of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen.

10.
Front Cardiovasc Med ; 10: 1251122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745091

RESUMEN

Background: Prolonged fasting, characterized by restricting caloric intake for 24 h or more, has garnered attention as a nutritional approach to improve lifespan and support healthy aging. Previous research from our group showed that a single bout of 36-h water-only fasting in humans resulted in a distinct metabolomic signature in plasma and increased levels of bioactive metabolites, which improved macrophage function and lifespan in C. elegans. Objective: This secondary outcome analysis aimed to investigate changes in the plasma lipidome associated with prolonged fasting and explore any potential links with markers of cardiometabolic health and aging. Method: We conducted a controlled pilot study with 20 male and female participants (mean age, 27.5 ± 4.4 years; mean BMI, 24.3 ± 3.1 kg/m2) in four metabolic states: (1) overnight fasted (baseline), (2) 2-h postprandial fed state (fed), (3) 36-h fasted state (fasted), and (4) 2-h postprandial refed state 12 h after the 36-h fast (refed). Plasma lipidomic profiles were analyzed using liquid chromatography and electrospray ionization mass spectrometry. Results: Several lipid classes, including lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylethanolamine, and triacylglycerol were significantly reduced in the 36-h fasted state, while free fatty acids, ceramides, and sphingomyelin were significantly increased compared to overnight fast and fed states (P < 0.05). After correction for multiple testing, 245 out of 832 lipid species were significantly altered in the fasted state compared to baseline (P < 0.05). Random forest models revealed that several lipid species, such as LPE(18:1), LPC(18:2), and FFA(20:1) were important features in discriminating the fasted state from both the overnight fasted and postprandial state. Conclusion: Our findings indicate that prolonged fasting vastly remodels the plasma lipidome and markedly alters the concentrations of several lipid species, which may be sensitive biomarkers of prolonged fasting. These changes in lipid metabolism during prolonged fasting have important implications for the management of cardiometabolic health and healthy aging, and warrant further exploration and validation in larger cohorts and different population groups.

11.
PLoS One ; 18(6): e0286587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37262084

RESUMEN

To find the gene hypervariable regions of three varieties of Hansenia forbesii H. Boissieu and determine their phylogenetic relationship, the chloroplast (cp) genome of these three varieties were firstly sequencing by the Illumina hiseq platform. In this study, we assembled the complete cp genome sequences of Hansenia forbesii LQ (156,954 bp), H. forbesii QX (157,181 bp), H. forbesii WQ (156,975 bp). They all contained 84 protein-coding genes, 37 tRNAs, and 8 rRNAs. The hypervariable regions between three cp genomes were atpF-atpH, petD, and rps15-ycf1. Phylogenetic analysis showed that H. forbesii LQ and H. forbesii WQ were closely related, followed by H. forbesii QX. This study showed that the three varieties of H. forbesii could be identified by the complete cp genome and specific DNA barcode (trnC-GCA-petN) and provided a new idea for germplasm identification of similar cultivated varieties.


Asunto(s)
Apiaceae , Genoma del Cloroplasto , Análisis de Secuencia de ADN , Filogenia
12.
Sci Rep ; 13(1): 5602, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019975

RESUMEN

Scutellaria baicalensis has been one of the most commonly used traditional Chinese medicinal plants in China for more than 2000 years. The three new varieties cultivated could not be distinguished by morphology before flowering. It will hinder the promotion of later varieties. Chloroplast DNA has been widely used in species identification. Moreover, previous studies have shown that complete chloroplast genome sequences have been suggested as super barcodes for identifying plants. Therefore, we sequenced and annotated the complete chloroplast genomes of three cultivated varieties. The chloroplast genomes of SBW, SBR, and SBP were 151,702 bp, 151,799 bp, and 151,876 bp, which contained 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The analysis of the repeat sequences, codon usage, and comparison of chloroplast genomes shared a high degree of conservation. However, the sliding window results show significant differences among the three cultivated varieties in matK-rps16 and petA-psbJ. And we found that the matK-rps16 sequence can be used as a barcode for the identification of three varieties. In addition, the complete chloroplast genome contains more variations and can be used as a super-barcode to identify these three cultivated varieties. Based on the protein-coding genes, the phylogenetic tree demonstrated that SBP was more closely related to SBW, in the three cultivated varieties. Interestingly, we found that S. baicalensis and S. rehderiana are closely related, which provides new ideas for the development of S. baicalensis. The divergence time analysis showed that the three cultivated varieties diverged at about 0.10 Mya. Overall, this study showed that the complete chloroplast genome could be used as a super-barcode to identify three cultivated varieties of S. baicalensis and provide biological information, and it also contributes to bioprospecting.


Asunto(s)
Genoma del Cloroplasto , Plantas Medicinales , Scutellaria baicalensis , Filogenia , ADN de Cloroplastos , Plantas Medicinales/genética
13.
Sci Rep ; 13(1): 5141, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991079

RESUMEN

Regulation of intron retention (IR), a form of alternative splicing, is a newly recognized checkpoint in gene expression. Since there are numerous abnormalities in gene expression in the prototypic autoimmune disease systemic lupus erythematosus (SLE), we sought to determine whether IR was intact in patients with this disease. We, therefore, studied global gene expression and IR patterns of lymphocytes in SLE patients. We analyzed RNA-seq data from peripheral blood T cell samples from 14 patients suffering from systemic lupus erythematosus (SLE) and 4 healthy controls and a second, independent data set of RNA-seq data from B cells from16 SLE patients and 4 healthy controls. We identified intron retention levels from 26,372 well annotated genes as well as differential gene expression and tested for differences between cases and controls using unbiased hierarchical clustering and principal component analysis. We followed with gene-disease enrichment analysis and gene-ontology enrichment analysis. Finally, we then tested for significant differences in intron retention between cases and controls both globally and with respect to specific genes. Overall decreased IR was found in T cells from one cohort and B cells from another cohort of patients with SLE and was associated with increased expression of numerous genes, including those encoding spliceosome components. Different introns within the same gene displayed both up- and down-regulated retention profiles indicating a complex regulatory mechanism. These results indicate that decreased IR in immune cells is characteristic of patients with active SLE and may contribute to the abnormal expression of specific genes in this autoimmune disease.


Asunto(s)
Lupus Eritematoso Sistémico , Linfocitos T , Humanos , Intrones/genética , Linfocitos T/metabolismo , Linfocitos B
14.
Angew Chem Int Ed Engl ; 62(23): e202302538, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36995566

RESUMEN

Electroactive ionenes combining caged-shaped diazabicyclic cations and aromatic diimides were developed as interlayers in organic solar cells (OSCs). These ionenes reduce the work-function of air-stable metal electrodes (e.g., Ag, Cu and Au) by generating strong interfacial dipoles, and their optoelectronic and morphological characters can be modulated by aromatic diimides, leading to high conductivity and good compatibility with active layers. The optimal ionene exhibits superior charge-transport, desirable crystallinity, and weak visible-absorption, boosting the efficiency of benchmark PM6 : Y6-based OSCs up to 17.44 %. The corresponding normal devices show excellent stability at maximum power point test under one sun illumination for 1000 h. Replacing Y6 with L8-BO promotes the efficiency to 18.43 %, one of the highest in binary OSCs. Notably, high efficiencies >16 % are maintained as the interlayer thickness increasing to 105 nm, the best result with interlayer-thickness over 100 nm.

15.
Am J Clin Nutr ; 117(2): 286-297, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36811567

RESUMEN

BACKGROUND: Periodic prolonged fasting (PF) extends lifespan in model organisms and ameliorates multiple disease states both clinically and experimentally owing, in part, to its ability to modulate the immune system. However, the relationship between metabolic factors, immunity, and longevity during PF remains poorly characterized especially in humans. OBJECTIVE: This study aimed to observe the effects of PF in human subjects on the clinical and experimental markers of metabolic and immune health and uncover underlying plasma-borne factors that may be responsible for these effects. METHODS: In this rigorously controlled pilot study (ClinicalTrial.gov identifier, NCT03487679), 20 young males and females participated in a 3-d study protocol including assessments of 4 distinct metabolic states: 1) overnight fasted baseline state, 2) 2-h postprandial fed state, 3) 36-h fasted state, and 4) final 2-h postprandial re-fed state 12 h after the 36-h fasting period. Clinical and experimental markers of immune and metabolic health were assessed for each state along with comprehensive metabolomic profiling of participant plasma. Bioactive metabolites identified to be upregulated in circulation after 36 h of fasting were then assessed for their ability to mimic the effects of fasting in isolated human macrophage as well as the ability to extend lifespan in Caenorhabditis elegans. RESULTS: We showed that PF robustly altered the plasma metabolome and conferred beneficial immunomodulatory effects on human macrophages. We also identified 4 bioactive metabolites that were upregulated during PF (spermidine, 1-methylnicotinamide, palmitoylethanolamide, and oleoylethanolamide) that could replicate these immunomodulatory effects. Furthermore, we found that these metabolites and their combination significantly extended the median lifespan of C. elegans by as much as 96%. CONCLUSIONS: The results of this study reveal multiple functionalities and immunological pathways affected by PF in humans, identify candidates for the development of fasting mimetic compounds, and uncover targets for investigation in longevity research.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Longevidad/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología , Proyectos Piloto , Ayuno , Macrófagos/metabolismo
16.
FASEB J ; 37(1): e22699, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520055

RESUMEN

Cardiac fibrosis is an essential pathological process in pressure overload (PO)-induced heart failure. Recently, myocyte-fibroblast communication is proven to be critical in heart failure, in which, pathological growth of cardiomyocytes (CMs) may promote fibrosis via miRNAs-containing exosomes (Exos). Peli1 regulates the activation of NF-κB and AP-1, which has been demonstrated to engage in miRNA transcription in cardiomyocytes. Therefore, we hypothesized that Peli1 in CMs regulates the activation of cardiac fibroblasts (CFs) through an exosomal miRNA-mediated paracrine mechanism, thereby promoting cardiac fibrosis. We found that CM-conditional deletion of Peli1 improved PO-induced cardiac fibrosis. Moreover, Exos from mechanical stretch (MS)-induced WT CMs (WT MS-Exos) promote activation of CFs, Peli1-/- MS-Exos reversed it. Furthermore, miRNA microarray and qPCR analysis showed that miR-494-3p was increased in WT MS-Exos while being down regulated in Peli1-/- MS-Exos. Mechanistically, Peli1 promoted miR-494-3p expression via NF-κB/AP-1 in CMs, and then miR-494-3p induced CFs activation by inhibiting PTEN and amplifying the phosphorylation of AKT, SMAD2/3, and ERK. Collectively, our study suggests that CMs Peli1 contributes to myocardial fibrosis via CMs-derived miR-494-3p-enriched exosomes under PO, and provides a potential exosomal miRNA-based therapy for cardiac fibrosis.


Asunto(s)
Comunicación Celular , Exosomas , Insuficiencia Cardíaca , Miocitos Cardíacos , Humanos , Exosomas/genética , Exosomas/metabolismo , Fibrosis/etiología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor de Transcripción AP-1/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cardiopatías/etiología , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Comunicación Celular/genética , Comunicación Celular/fisiología
17.
Mol Cell Proteomics ; 21(11): 100427, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36252735

RESUMEN

The proteins in the cell membrane of the brain are modified by glycans in highly interactive regions. The glycans and glycoproteins are involved in cell-cell interactions that are of fundamental importance to the brain. In this study, the comprehensive N-glycome and N-glycoproteome of the brain were determined in 11 functional brain regions, some of them known to be affected with the progression of Alzheimer's disease. N-glycans throughout the regions were generally highly branched and highly sialofucosylated. Regional variations were also found with regard to the glycan types including high mannose and complex-type structures. Glycoproteomic analysis identified the proteins that differed in glycosylation in the various regions. To obtain the broader representation of glycan compositions, four subjects with two in their 70s and two in their 90s representing two Alzheimer's disease subjects, one hippocampal sclerosis subject, and one subject with no cognitive impairment were analyzed. The four subjects were all glycomically mapped across 11 brain regions. Marked differences in the glycomic and glycoproteomic profiles were observed between the samples.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Glicosilación , Proteoma/metabolismo , Polisacáridos/metabolismo , Encéfalo/metabolismo
18.
Acta Neuropathol ; 144(6): 1127-1142, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178522

RESUMEN

Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is refractory to most treatments used for pGBM, are poorly known. We, therefore, quantified the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 40 matched pGBM-rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and in particular 2-5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. Our data identify a new class of therapeutic targets that emerge from the adaptive response of pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic opportunities absent at pGBM diagnosis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Neoplasias Encefálicas/genética , Proteómica , Recurrencia Local de Neoplasia/genética , Transcriptoma
19.
J Mol Cell Cardiol ; 173: 30-46, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36179399

RESUMEN

Autophagy flux is impaired during myocardial ischemia/reperfusion (M-I/R) via the accumulation of autophagosome and insufficient clearance, which exacerbates cardiomyocyte death. Peli1 (Pellion1) is a RING finger domain-containing ubiquitin E3 ligase that could catalyze the polyubiquitination of substrate proteins. Peli1 has been demonstrated to play an important role in ischemic cardiac diseases. However, little is known about whether Peli1 is involved in the regulation of autophagy flux during M-I/R. The present study investigated whether M-I/R induced impaired autophagy flux could be mediated through Peli1 dependent mechanisms. We induced M-I/R injury in wild type (WT) and Peli1 knockout mice and observed that M-I/R significantly decreased cardiac function that was associated with increased cardiac Peli1 expression and upregulated autophagy-associated protein LC3II and P62. In contrast, Peli1 knockout mice exhibited significant improvement of M-I/R induced cardiac dysfunction and decreased LC3II and P62 expression. Besides, inhibitors of autophagy also increased the infarct size in Peli1 knockout mice after 24 h of reperfusion. Mechanistic studies demonstrated that in vivo I/R or in vitro hypoxia/reoxygenation (H/R) markedly increased the Peli1 E3 ligase activity which directly promoted the ubiquitination of P62 at lysine(K)7 via K63-linkage to inhibit its dimerization and autophagic degradation. Co-immunoprecipitation and GST-pull down assay indicated that Peli1 interacted with P62 via the Ring domain. In addition, Peli1 deficiency also decreased cardiomyocyte apoptosis. Together, our work demonstrated a critical link between increased expression and activity of Peli1 and autophagy flux blockage in M-I/R injury, providing insight into a promising strategy for treating myocardium M-I/R injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia , Miocitos Cardíacos/metabolismo , Ubiquitinación , Ratones Noqueados , Proteínas Nucleares/metabolismo
20.
RSC Adv ; 12(29): 18450-18456, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35799915

RESUMEN

In this work, we developed a targeted glycoproteomic method to monitor the site-specific glycoprofiles and quantities of the most abundant HDL-associated proteins using Orbitrap LC-MS for (glyco)peptide target discovery and QqQ LC-MS for quantitative analysis. We conducted a pilot study using the workflow to determine whether HDL protein glycoprofiles are altered in healthy human participants in response to dietary glycan supplementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...